Counting multidimensional polyominoes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting k-Convex Polyominoes

We compute an asymptotic estimate of a lower bound of the number of k-convex polyominoes of semiperimeter p. This approximation can be written as μ(k)p4p where μ(k) is a rational fraction of k which up to μ(k) is the asymptotics of convex polyominoes. A polyomino is a connected set of unit square cells drawn in the plane Z × Z [7]. The size of a polyomino is the number of its cells. A central p...

متن کامل

Counting polyominoes with minimum perimeter

The number of essentially different square polyominoes of order n and minimum perimeter p(n) is enumerated.

متن کامل

Counting and Multidimensional Poverty

The concept of multidimensional poverty has risen to prominence among researchers and policymakers. The compelling writings of Amartya Sen, participatory poverty exercises in many countries, and the Millennium Development Goals (MDGs) all draw attention to the multiple deprivations suffered by many of the poor and the interconnections among these deprivations. A key task for research has been t...

متن کامل

Counting Polyominoes: A Parallel Implementation for Cluster Computing

The exact enumeration of most interesting combinatorial problems has exponential computational complexity. The finite-lattice method reduces this complexity for most two-dimensional problems. The basic idea is to enumerate the problem on small finite lattices using a transfer-matrix formalism. Systematically grow the size of the lattices and combine the results in order to obtain the desired se...

متن کامل

Counting Directed-convex Polyominoes According to Their Perimeter

An approach is presented for the enumeration of directed-convex polyominos that are not parallelogram polyominoes and we establish that there are ( 2n n−2 ) with a perimeter of 2n + 4. Finally using known results we prove that there are ( 2n n ) directed-convex polyominos with a perimeter of 2n + 4.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Computer Journal

سال: 1975

ISSN: 0010-4620,1460-2067

DOI: 10.1093/comjnl/18.4.366